Complexity of Bezout's Theorem VI: Geodesics in the Condition (Number) Metric

نویسنده

  • Michael Shub
چکیده

We introduce a new complexity measure of a path of (problems, solutions) pairs in terms of the length of the path in the condition metric which we define in the article. The measure gives an upper bound for the number of Newton steps sufficient to approximate the path discretely starting from one end and thus produce an approximate zero for the endpoint. This motivates the study of short paths or geodesics in the condition metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of Bezout's Theorem VII: Distance Estimates in the Condition Metric

We study geometric properties of the solution variety for the problem of approximating solutions of systems of polynomial equations. We prove that given two pairs (fi, ζi), i = 1, 2, there exists a short path joining them such that the complexity of following the path is bounded by the logarithm of the condition number of the problems.

متن کامل

The Condition Metric in the Space of Rectangular Full Rank Matrices

The condition metric in spaces of polynomial systems has been introduced and studied in a series of papers by Beltrán, Dedieu, Malajovich and Shub. The interest of this metric comes from the fact that the associated geodesics avoid ill-conditioned problems and are a useful tool to improve classical complexity bounds for Bézout’s theorem. The linear case is examined here: Using nonsmooth nonconv...

متن کامل

The Existence Theorem for Contractive Mappings on $wt$-distance in $b$-metric Spaces Endowed with a Graph and its Application

In this paper, we study the existence and uniqueness of fixed points for mappings with respect to a $wt$-distance in $b$-metric spaces endowed with a graph. Our results are significant, since we replace the condition of continuity of mapping with the condition of orbitally $G$-continuity of mapping and we consider $b$-metric spaces with graph instead of $b$-metric spaces, under which can be gen...

متن کامل

Fixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space

In this paper, we shall establish some fixed point theorems for mappings with the contractive  condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...

متن کامل

A COMMON FIXED POINT THEOREM FOR SIX WEAKLY COMPATIBLE MAPPINGS IN M-FUZZY METRIC SPACES

In this paper, we give some new definitions of M-fuzzy metric spaces and we prove a common fixed point theorem for six mappings under the condition of weakly compatible mappings in complete M-fuzzy metric spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009